

Dr. Pooja Kumari
SB College Ara

Origin and Evolution of Chordata

Introduction

Chordata is a major phylum of the animal kingdom that includes animals with a notochord, dorsal hollow nerve cord, pharyngeal gill slits, post-anal tail, and endostyle or thyroid gland at some stage of their life cycle. The evolutionary history of chordates explains how simple invertebrate ancestors gave rise to complex vertebrates, including humans.

Concept of Origin of Chordates

The origin of chordates has been a topic of extensive debate among zoologists. Chordates are believed to have evolved from invertebrate ancestors, particularly from groups within the phylum Deuterostomia. Comparative anatomy, embryology, paleontology, and molecular biology provide evidence for their origin.

Theories on the Origin of Chordates

1. Annelid Theory

Proposed by Semper and Dohrn, this theory suggests that chordates evolved from annelid-like ancestors. According to this view, the ventral nerve cord of annelids became dorsal in chordates due to body inversion. However, differences in embryological development and coelom formation weaken this theory.

2. Arthropod Theory

This theory proposes that chordates evolved from arthropod ancestors. It is largely rejected due to fundamental differences in body organization, exoskeleton presence, and developmental patterns.

3. Echinoderm Theory

This widely accepted theory states that chordates evolved from echinoderm-like ancestors. Both groups share deuterostomic development, radial cleavage, and enterocoelous coelom formation. Hemichordates act as a connecting link between echinoderms and chordates.

4. Urochordate Theory

Proposed by Garstang, this theory suggests that vertebrates evolved through neoteny from the larval stages of urochordates. The tadpole larva of ascidians shows chordate features such as notochord and dorsal nerve cord.

Evolution of Chordates

The evolution of chordates can be studied by examining different subphyla: Protochordata and Vertebrata. Evolution shows gradual structural complexity and specialization.

1. Protochordates

Protochordates include Hemichordata, Urochordata, and Cephalochordata. They possess basic chordate features but lack a vertebral column. *Balanoglossus*, *Herdmania*, and *Amphioxus* are important examples.

2. Evolution of Vertebrates

Vertebrates evolved from primitive chordates similar to *Amphioxus*. Key evolutionary trends include development of cranium, vertebral column, paired appendages, jaws, lungs, and advanced sense

organs.

Major Evolutionary Stages of Vertebrates

1. Agnatha (Jawless fishes): Primitive vertebrates without jaws.
2. Gnathostomata: Development of jaws and paired fins.
3. Pisces: Aquatic vertebrates with fins and gills.
4. Amphibia: Transition from water to land.
5. Reptilia: Fully terrestrial vertebrates with amniotic eggs.
6. Aves: Birds adapted for flight.
7. Mammalia: Highest evolved vertebrates with hair and mammary glands.

Conclusion

The origin and evolution of chordates demonstrate a gradual transition from simple invertebrate ancestors to highly complex vertebrates. Understanding these evolutionary patterns helps explain the diversity, adaptation, and success of chordates in different habitats.